skip to main content


Search for: All records

Creators/Authors contains: "Ren, Zhifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Boron arsenide (BAs) is a covalent semiconductor with a theoretical intrinsic thermal conductivity approaching 1300 W/m K. The existence of defects not only limits the thermal conductivity of BAs significantly but also changes its pressure-dependent thermal transport behavior. Using both picosecond transient thermoreflectance and femtosecond time-domain thermoreflectance techniques, we observed a non-monotonic dependence of thermal conductivity on pressure. This trend is not caused by the pressure-modulated phonon–phonon scattering, which was predicted to only change the thermal conductivity by 10%–20%, but a result of several competing effects, including defect–phonon scattering and modification of structural defects under high pressure. Our findings reveal the complexity of the defect-modulated thermal behavior under pressure.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    The thermal conductivity of boron arsenide (BAs) is believed to be influenced by phonon scattering selection rules due to its special phonon dispersion. Compression of BAs leads to significant changes in phonon dispersion, which allows for a test of first principles theories for how phonon dispersion affects three‐ and four‐phonon scattering rates. This study reports the thermal conductivity of BAs from 0 to 30 GPa. Thermal conductivity vs. pressure of BAs is measured by time‐domain thermoreflectance with a diamond anvil cell. In stark contrast to what is typical for nonmetallic crystals, BAs is observed to have a pressure independent thermal conductivity below 30 GPa. The thermal conductivity of nonmetallic crystals typically increases upon compression. The unusual pressure independence of BAs's thermal conductivity shows the important relationship between phonon dispersion properties and three‐ and four‐phonon scattering rates.

     
    more » « less
  4. Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched10B or11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

     
    more » « less
  5. Abstract

    The recent observation of unusually high thermal conductivity exceeding 1000 W m−1K−1in single‐crystal boron arsenide (BAs) has led to interest in the potential application of this semiconductor for thermal management. Although both the electron/hole high mobilities have been calculated for BAs, there is a lack of experimental investigation of its electronic properties. Here, a photoluminescence (PL) measurement of single‐crystal BAs at different temperatures and pressures is reported. The measurements reveal an indirect bandgap and two donor–acceptor pair (DAP) recombination transitions. Based on first‐principles calculations and time‐of‐flight secondary‐ion mass spectrometry results, the two DAP transitions are confirmed to originate from Si and C impurities occupying shallow energy levels in the bandgap. High‐pressure PL spectra show that the donor level with respect to the conduction band minimum shrinks with increasing pressure, which affects the release of free carriers from defect states. These findings suggest the possibility of strain engineering of the transport properties of BAs for application in electronic devices.

     
    more » « less